TY - JOUR
T1 - Constraints on the presence of post-perovskite in Earth's lowermost mantle from tomographic-geodynamic model comparisons
AU - Koelemeijer, P.
AU - Schuberth, B. S.A.
AU - Davies, D. R.
AU - Deuss, A.
AU - Ritsema, J.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/7/15
Y1 - 2018/7/15
N2 - Lower mantle tomography models consistently feature an increase in the ratio of shear-wave velocity (VS) to compressional-wave velocity (VP) variations and a negative correlation between shear-wave and bulk-sound velocity (VC) variations. These seismic characteristics, also observed in the recent SP12RTS model, have been interpreted to be indicative of large-scale chemical variations. Other explanations, such as the lower mantle post-perovskite (pPv) phase, which would not require chemical heterogeneity, have been explored less. Constraining the origin of these seismic features is important, as geodynamic simulations predict a fundamentally different style of mantle convection under both scenarios. Here, we investigate to what extent the presence of pPv explains the observed high VS/VP ratios and negative VS–VC correlation globally. We compare the statistical properties of SP12RTS with the statistics of synthetic tomography models, derived from both thermal and thermochemical models of 3-D global mantle convection. We convert the temperature fields of these models into seismic velocity structures using mineral physics lookup tables with and without pPv. We account for the limited tomographic resolution of SP12RTS using its resolution operator for both VS and VP structures. This allows for direct comparisons of the resulting velocity ratios and correlations. Although the tomographic filtering significantly affects the synthetic tomography images, we demonstrate that the effect of pPv remains evident in the ratios and correlations of seismic velocities. We find that lateral variations in the presence of pPv have a dominant influence on the VS/VP ratio and VS–VC correlation, which are thus unsuitable measures to constrain the presence of large-scale chemical variations in the lowermost mantle. To explain the decrease in the VS/VP ratio of SP12RTS close to the CMB, our results favour a pPv-bearing CMB region, which has implications for the stability field of pPv in the Earth's mantle.
AB - Lower mantle tomography models consistently feature an increase in the ratio of shear-wave velocity (VS) to compressional-wave velocity (VP) variations and a negative correlation between shear-wave and bulk-sound velocity (VC) variations. These seismic characteristics, also observed in the recent SP12RTS model, have been interpreted to be indicative of large-scale chemical variations. Other explanations, such as the lower mantle post-perovskite (pPv) phase, which would not require chemical heterogeneity, have been explored less. Constraining the origin of these seismic features is important, as geodynamic simulations predict a fundamentally different style of mantle convection under both scenarios. Here, we investigate to what extent the presence of pPv explains the observed high VS/VP ratios and negative VS–VC correlation globally. We compare the statistical properties of SP12RTS with the statistics of synthetic tomography models, derived from both thermal and thermochemical models of 3-D global mantle convection. We convert the temperature fields of these models into seismic velocity structures using mineral physics lookup tables with and without pPv. We account for the limited tomographic resolution of SP12RTS using its resolution operator for both VS and VP structures. This allows for direct comparisons of the resulting velocity ratios and correlations. Although the tomographic filtering significantly affects the synthetic tomography images, we demonstrate that the effect of pPv remains evident in the ratios and correlations of seismic velocities. We find that lateral variations in the presence of pPv have a dominant influence on the VS/VP ratio and VS–VC correlation, which are thus unsuitable measures to constrain the presence of large-scale chemical variations in the lowermost mantle. To explain the decrease in the VS/VP ratio of SP12RTS close to the CMB, our results favour a pPv-bearing CMB region, which has implications for the stability field of pPv in the Earth's mantle.
KW - composition of the mantle
KW - geodynamic modelling
KW - mineral physics
KW - seismic tomography
KW - tomographic filtering
UR - http://www.scopus.com/inward/record.url?scp=85046870274&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2018.04.056
DO - 10.1016/j.epsl.2018.04.056
M3 - Article
SN - 0012-821X
VL - 494
SP - 226
EP - 238
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -