TY - JOUR
T1 - Contrasting diversity patterns of breeding Anatidae in the Northern and Southern Hemispheres
AU - Zeng, Qing
AU - Reid, Julian
AU - Saintilan, Neil
AU - Colloff, Matthew J.
AU - Lei, Guangchun
AU - Wen, Li
N1 - Publisher Copyright:
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - For sustaining ecosystem functions and services, environmental conservation strategies increasingly target to maintain the multiple facets of biodiversity, such as functional diversity (FD) and phylogenetic diversity (PD), not just taxonomic diversity (TD). However, spatial mismatches among these components of biodiversity can impose challenges for conservation decisions. Hence, understanding the drivers of biodiversity is critical. Here, we investigated the global distribution patterns of TD, FD, and PD of breeding Anatidae. Using null models, we clarified the relative importance of mechanisms that influence Anatidae community. We also developed random forest models to evaluate the effects of environmental variables on the Anatidae TD, FD, and PD. Our results showed that geographical variation in Anatidae diversity is hemispheric rather than latitudinal. In the species-rich Northern Hemisphere (NH), the three diversity indices decreased with latitude within the tropical zone of the NH, but increased in the temperate zone reaching a peak at 44.5–70.0°N, where functional and phylogenetic clustering was a predominant feature. In the Southern Hemisphere (SH), Anatidae diversity increased poleward and a tendency to overdispersion was common. In NH, productivity seasonality and temperature in the coldest quarter were the most important variables. Productivity seasonality was also the most influential predictor of SH Anatidae diversity, along with peak productivity. These findings suggested that seasonality and productivity, both consistent with the energy-diversity hypothesis, interact with the varying histories to shape the contrasting hemispheric patterns of Anatidae diversity. Phylogenetic diversity (PD) and FD underdispersion, widespread across the species-rich, seasonally productive mid-to-high latitudes of the NH, reflects a rapid evolutionary radiation and resorting associated with Pleistocene cycles of glaciation. The SH continents (and southern Asia) are characterized by a widespread tendency toward PD and FD overdispersion, with their generally species-poor communities comprising proportionately more older lineages in thermally more stable but less predictably productive environments.
AB - For sustaining ecosystem functions and services, environmental conservation strategies increasingly target to maintain the multiple facets of biodiversity, such as functional diversity (FD) and phylogenetic diversity (PD), not just taxonomic diversity (TD). However, spatial mismatches among these components of biodiversity can impose challenges for conservation decisions. Hence, understanding the drivers of biodiversity is critical. Here, we investigated the global distribution patterns of TD, FD, and PD of breeding Anatidae. Using null models, we clarified the relative importance of mechanisms that influence Anatidae community. We also developed random forest models to evaluate the effects of environmental variables on the Anatidae TD, FD, and PD. Our results showed that geographical variation in Anatidae diversity is hemispheric rather than latitudinal. In the species-rich Northern Hemisphere (NH), the three diversity indices decreased with latitude within the tropical zone of the NH, but increased in the temperate zone reaching a peak at 44.5–70.0°N, where functional and phylogenetic clustering was a predominant feature. In the Southern Hemisphere (SH), Anatidae diversity increased poleward and a tendency to overdispersion was common. In NH, productivity seasonality and temperature in the coldest quarter were the most important variables. Productivity seasonality was also the most influential predictor of SH Anatidae diversity, along with peak productivity. These findings suggested that seasonality and productivity, both consistent with the energy-diversity hypothesis, interact with the varying histories to shape the contrasting hemispheric patterns of Anatidae diversity. Phylogenetic diversity (PD) and FD underdispersion, widespread across the species-rich, seasonally productive mid-to-high latitudes of the NH, reflects a rapid evolutionary radiation and resorting associated with Pleistocene cycles of glaciation. The SH continents (and southern Asia) are characterized by a widespread tendency toward PD and FD overdispersion, with their generally species-poor communities comprising proportionately more older lineages in thermally more stable but less predictably productive environments.
KW - divergence
KW - null model
KW - phylogenetic and functional diversity
KW - productivity seasonality
KW - random forest model
KW - standard effect size
KW - taxonomic
UR - http://www.scopus.com/inward/record.url?scp=85070772047&partnerID=8YFLogxK
U2 - 10.1002/ece3.5540
DO - 10.1002/ece3.5540
M3 - Article
SN - 2045-7758
VL - 9
SP - 9990
EP - 10003
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 17
ER -