TY - JOUR
T1 - Control of the phytoplankton response during the SAGE experiment
T2 - A synthesis
AU - Peloquin, Jill
AU - Hall, Julie
AU - Safi, Karl
AU - Ellwood, Michael
AU - Law, Cliff S.
AU - Thompson, Karen
AU - Kuparinen, Jorma
AU - Harvey, Michael
AU - Pickmere, Stuart
PY - 2011/3/15
Y1 - 2011/3/15
N2 - The SOLAS Air-Sea Gas Exchange (SAGE) experiment was conducted in Sub-Antarctic waters off the east coast of the South Island of New Zealand in the late summer of 2004. This mesoscale iron enrichment experiment was unique in that chlorophyll a (chl a) and primary productivity were only 2× OUT stations values toward the end of the experiment and this enhancement was due to increased activity of non-diatomaceous species. In addition, this enhancement in activity appeared to occur without a significant build up of particulate organic carbon. Picoeukaryotes (<2 γm) were the only members of the phytoplankton assemblage that showed a statistically significant increase, a doubling in biomass. To better understand the controls of phytoplankton growth and biomass, we present results from a series of on-deck perturbation experiments conducted during SAGE. Results suggest that the pico-dominated phytoplankton assemblage was only weakly inhibited by iron. Diatoms with high growth rates comprised a small (<1%) fraction of the phytoplankton assemblage, were likely iron limited, and potentially further limited by silicic acid and therefore did not significantly contribute to bloom dynamics. On deck experiments and comparison of SAGE with other iron addition experiments suggested that neither light availability nor deep mixed layers limited phytoplankton growth. Although no substantial increase in grazing rate or specific phytoplankton growth rate was detected, microzooplankton biomass doubled over SAGE as a result of an increase in cell size. The importance of microzooplankton grazing was highlighted by the fact that they were capable of consuming 15-49% of the total phytoplankton production per day. Removal was highest on eukaryotic picophytoplankton production with a mean value of 72% (29-143%). Patch dilution played an important role during SAGE; the mean patch net algal growth:dilution rate, 1.13 (0.4-2.2) was the lowest reported for a mesoscale iron enrichment experiment. Phytoplankton biomass, estimated by chlorophyll a, only accumulated when phytoplankton growth exceeded grazing and when net algal growth exceeded dilution rate. The SAGE results highlight the function of the smallest phytoplankton size fraction described by the ecumenical Iron Hypothesis. Thus, adding iron to HNLC-low silicic acid regions during certain times of the year may simply transfer more carbon through the microbial food web. A primary implication of this study is that any iron-mediated gain in fixed carbon with this set of environmental conditions has a high probability of being recycled in surface waters.
AB - The SOLAS Air-Sea Gas Exchange (SAGE) experiment was conducted in Sub-Antarctic waters off the east coast of the South Island of New Zealand in the late summer of 2004. This mesoscale iron enrichment experiment was unique in that chlorophyll a (chl a) and primary productivity were only 2× OUT stations values toward the end of the experiment and this enhancement was due to increased activity of non-diatomaceous species. In addition, this enhancement in activity appeared to occur without a significant build up of particulate organic carbon. Picoeukaryotes (<2 γm) were the only members of the phytoplankton assemblage that showed a statistically significant increase, a doubling in biomass. To better understand the controls of phytoplankton growth and biomass, we present results from a series of on-deck perturbation experiments conducted during SAGE. Results suggest that the pico-dominated phytoplankton assemblage was only weakly inhibited by iron. Diatoms with high growth rates comprised a small (<1%) fraction of the phytoplankton assemblage, were likely iron limited, and potentially further limited by silicic acid and therefore did not significantly contribute to bloom dynamics. On deck experiments and comparison of SAGE with other iron addition experiments suggested that neither light availability nor deep mixed layers limited phytoplankton growth. Although no substantial increase in grazing rate or specific phytoplankton growth rate was detected, microzooplankton biomass doubled over SAGE as a result of an increase in cell size. The importance of microzooplankton grazing was highlighted by the fact that they were capable of consuming 15-49% of the total phytoplankton production per day. Removal was highest on eukaryotic picophytoplankton production with a mean value of 72% (29-143%). Patch dilution played an important role during SAGE; the mean patch net algal growth:dilution rate, 1.13 (0.4-2.2) was the lowest reported for a mesoscale iron enrichment experiment. Phytoplankton biomass, estimated by chlorophyll a, only accumulated when phytoplankton growth exceeded grazing and when net algal growth exceeded dilution rate. The SAGE results highlight the function of the smallest phytoplankton size fraction described by the ecumenical Iron Hypothesis. Thus, adding iron to HNLC-low silicic acid regions during certain times of the year may simply transfer more carbon through the microbial food web. A primary implication of this study is that any iron-mediated gain in fixed carbon with this set of environmental conditions has a high probability of being recycled in surface waters.
KW - Growth rate
KW - Iron addition experiment
KW - Light limitation
KW - Microzooplankton grazing
KW - Phytoplankton
KW - SAGE
KW - SOLAS
KW - Silicic acid
KW - Sub-Antarctic Pacific
UR - http://www.scopus.com/inward/record.url?scp=79952484653&partnerID=8YFLogxK
U2 - 10.1016/j.dsr2.2010.10.019
DO - 10.1016/j.dsr2.2010.10.019
M3 - Article
SN - 0967-0645
VL - 58
SP - 824
EP - 838
JO - Deep-Sea Research Part II: Topical Studies in Oceanography
JF - Deep-Sea Research Part II: Topical Studies in Oceanography
IS - 6
ER -