Convection heat transfer from an inclined narrow flat plate with uniform flux boundary conditions

E. Abbasi Shavazi, J. F. Torres, G. O. Hughes, J. D. Pye

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Natural convection from flat plates finds diverse applications in engineering and natural systems. While previous studies have considered natural convection from isothermal vertical plates in air and tilted plates in water subject to uniform flux, little attention has been given to natural convection from inclined narrow plates in air. This work reports on experiments undertaken on an inclined narrow plate with uniform flux boundary conditions. The spatial distribution of temperature along the length of the plate was measured for a range of imposed uniform flux values and inclination angles, ranging between vertical and downward-facing horizontal. The temperature profile along the plate indicates convective heat transfer rates associated with the development of the flow from a laminar to a turbulent regime. An interesting result of increased convection loss at a downward-facing inclination was observed, and is shown to be associated with the absence of sidewalls. Smoke visualisation of the flow was undertaken and the transition from laminar to turbulent flow was observed.

Original languageEnglish
Title of host publicationProceedings of the 21st Australasian Fluid Mechanics Conference, AFMC 2018
EditorsTimothy C.W. Lau, Richard M. Kelso
PublisherAustralasian Fluid Mechanics Society
ISBN (Electronic)9780646597843
Publication statusPublished - 2018
Event21st Australasian Fluid Mechanics Conference, AFMC 2018 - Adelaide, Australia
Duration: 10 Dec 201813 Dec 2018

Publication series

NameProceedings of the 21st Australasian Fluid Mechanics Conference, AFMC 2018

Conference

Conference21st Australasian Fluid Mechanics Conference, AFMC 2018
Country/TerritoryAustralia
CityAdelaide
Period10/12/1813/12/18

Fingerprint

Dive into the research topics of 'Convection heat transfer from an inclined narrow flat plate with uniform flux boundary conditions'. Together they form a unique fingerprint.

Cite this