TY - GEN
T1 - Cooperative body-area-communications
T2 - 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2012
AU - Dong, Jie
AU - Smith, David
PY - 2012
Y1 - 2012
N2 - In this paper, coexistence of multiple mobile wireless body area networks (WBANs), where there is no coordination between WBANs, is investigated for the case where the WBAN-of-interest employs cooperative communications. A decode-and-forward protocol with two dual-hop links, two relays and selection combining (SC) at the hub (or gateway device) is chosen for the WBAN-of-interest. A suitable time-division-multiple-access (TDMA) scheme is used, enabling intra-network and inter-network operation, to allocate slots for each Tx/Rx link packet transmission. Realistic channel models are employed with various amounts of shadowing, small-scale fading and white noise introduced between WBANs. For the WBAN-of-interest, many hours of measured channel gain data is employed to emulate the channel for this WBAN. It is found that the chosen cooperative communications provides significantly better co-channel interference mitigation than single-link star topology WBAN communications in a mobile, dynamic, scenario, hence the signal-to-interference-plus-noise ratio (SINR) for 10% outage probability at the hub is greatly improved by up-to 12 dB. It is also demonstrated that the location of the hub, given three typical locations, has significant impact on the performance of the cooperative WBAN communications.
AB - In this paper, coexistence of multiple mobile wireless body area networks (WBANs), where there is no coordination between WBANs, is investigated for the case where the WBAN-of-interest employs cooperative communications. A decode-and-forward protocol with two dual-hop links, two relays and selection combining (SC) at the hub (or gateway device) is chosen for the WBAN-of-interest. A suitable time-division-multiple-access (TDMA) scheme is used, enabling intra-network and inter-network operation, to allocate slots for each Tx/Rx link packet transmission. Realistic channel models are employed with various amounts of shadowing, small-scale fading and white noise introduced between WBANs. For the WBAN-of-interest, many hours of measured channel gain data is employed to emulate the channel for this WBAN. It is found that the chosen cooperative communications provides significantly better co-channel interference mitigation than single-link star topology WBAN communications in a mobile, dynamic, scenario, hence the signal-to-interference-plus-noise ratio (SINR) for 10% outage probability at the hub is greatly improved by up-to 12 dB. It is also demonstrated that the location of the hub, given three typical locations, has significant impact on the performance of the cooperative WBAN communications.
UR - http://www.scopus.com/inward/record.url?scp=84871987940&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2012.6362733
DO - 10.1109/PIMRC.2012.6362733
M3 - Conference contribution
SN - 9781467325691
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 2269
EP - 2274
BT - 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2012
Y2 - 9 September 2012 through 12 September 2012
ER -