TY - JOUR
T1 - Coordination of Substrate Binding and Protonation in the N. gonorrhoeae MtrD Efflux Pump Controls the Functionally Rotating Transport Mechanism
AU - Fairweather, Stephen J.
AU - Gupta, Vrinda
AU - Chitsaz, Mohsen
AU - Booth, Lauren
AU - Brown, Melissa H.
AU - O'Mara, Megan L.
N1 - Publisher Copyright:
©
PY - 2021/6/11
Y1 - 2021/6/11
N2 - Multidrug resistance is a serious problem that threatens the effective treatment of the widespread sexually transmitted disease gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae. The drug efflux pump primarily implicated in N. gonorrhoeae antimicrobial resistance is the inner membrane transporter MtrD, which forms part of the tripartite multiple transferable resistance (Mtr) CDE efflux system. A structure of MtrD was first solved in 2014 as a symmetrical homotrimer, and then, recently, as an asymmetrical homotrimer. Through a series of molecular dynamics simulations and mutagenesis experiments, we identify the combination of substrate binding and protonation states of the proton relay network that drives the transition from the symmetric to the asymmetric conformation of MtrD. We characterize the allosteric coupling between the functionally important local regions that control conformational changes between the access, binding, and extrusion states and allow for transition to the asymmetric MtrD conformation. We also highlight a significant rotation of the transmembrane helices caused by protonation of the proton relay network, which widens the intermonomeric gap that is a hallmark of the rotational transporter mechanism. This is the first analysis and description of the transport mechanism for the N. gonorrhoeae MtrD transporter and provides evidence that antimicrobial efflux in MtrD follows the functionally rotating transport mechanism seen in protein homologues from the same transport protein superfamily.
AB - Multidrug resistance is a serious problem that threatens the effective treatment of the widespread sexually transmitted disease gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae. The drug efflux pump primarily implicated in N. gonorrhoeae antimicrobial resistance is the inner membrane transporter MtrD, which forms part of the tripartite multiple transferable resistance (Mtr) CDE efflux system. A structure of MtrD was first solved in 2014 as a symmetrical homotrimer, and then, recently, as an asymmetrical homotrimer. Through a series of molecular dynamics simulations and mutagenesis experiments, we identify the combination of substrate binding and protonation states of the proton relay network that drives the transition from the symmetric to the asymmetric conformation of MtrD. We characterize the allosteric coupling between the functionally important local regions that control conformational changes between the access, binding, and extrusion states and allow for transition to the asymmetric MtrD conformation. We also highlight a significant rotation of the transmembrane helices caused by protonation of the proton relay network, which widens the intermonomeric gap that is a hallmark of the rotational transporter mechanism. This is the first analysis and description of the transport mechanism for the N. gonorrhoeae MtrD transporter and provides evidence that antimicrobial efflux in MtrD follows the functionally rotating transport mechanism seen in protein homologues from the same transport protein superfamily.
KW - MtrD
KW - Neisseria gonorrhoeae
KW - RND transporter
KW - antimicrobial resistance
KW - efflux pumps
KW - molecular dynamics simulations
UR - http://www.scopus.com/inward/record.url?scp=85106370698&partnerID=8YFLogxK
U2 - 10.1021/acsinfecdis.1c00149
DO - 10.1021/acsinfecdis.1c00149
M3 - Article
SN - 2373-8227
VL - 7
SP - 1833
EP - 1847
JO - ACS Infectious Diseases
JF - ACS Infectious Diseases
IS - 6
ER -