TY - JOUR
T1 - Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys
AU - Koga, Guilherme Yuuki
AU - Birbilis, Nick
AU - Zepon, Guilherme
AU - Kiminami, Claudio Shyinti
AU - Botta, Walter José
AU - Kaufman, Michael
AU - Clarke, Amy
AU - Coury, Francisco Gil
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/12/5
Y1 - 2021/12/5
N2 - Cr-Co-Ni Multi-Principal Element Alloys (MPEAs) with good combinations of strength and ductility were studied to determine their attendant corrosion performance. Three alloys – Cr45Co27.5Ni27.5, Cr33.3Co33.3Ni33.3, and Cr25Co37.5Ni37.5 – were produced in recrystallized and cold-worked states, and their electrochemical response was tested in a simulated seawater electrolyte. Increasing the Cr content improved the yield strength (σy) and ultimate tensile strength (UTS), while maintaining high (>40%) uniform elongation. Potentiodynamic polarization and electrochemical impedance spectroscopy revealed high corrosion resistance of the alloys in simulated seawater, in particular the Cr-rich alloy (Cr45Co27.5Ni27.5). Furthermore, following 40% cold work, the Cr45Co27.5Ni27.5 alloy displayed a further improvement in corrosion resistance. The Cr45Co27.5Ni27.5 alloy displays mechanical and corrosion properties that exceed those of conventional structural alloys such as Ni-superalloys, stainless steels and most 3d-transition metal MPEAs, including those without appreciable ductility. Therefore, in the present work it is shown that increasing the Cr content in Cr-Co-Ni alloys leads to a better combination of mechanical properties and corrosion resistance in saline environment, as observed especially for the Cr45Co27.5Ni27.5 alloy.
AB - Cr-Co-Ni Multi-Principal Element Alloys (MPEAs) with good combinations of strength and ductility were studied to determine their attendant corrosion performance. Three alloys – Cr45Co27.5Ni27.5, Cr33.3Co33.3Ni33.3, and Cr25Co37.5Ni37.5 – were produced in recrystallized and cold-worked states, and their electrochemical response was tested in a simulated seawater electrolyte. Increasing the Cr content improved the yield strength (σy) and ultimate tensile strength (UTS), while maintaining high (>40%) uniform elongation. Potentiodynamic polarization and electrochemical impedance spectroscopy revealed high corrosion resistance of the alloys in simulated seawater, in particular the Cr-rich alloy (Cr45Co27.5Ni27.5). Furthermore, following 40% cold work, the Cr45Co27.5Ni27.5 alloy displayed a further improvement in corrosion resistance. The Cr45Co27.5Ni27.5 alloy displays mechanical and corrosion properties that exceed those of conventional structural alloys such as Ni-superalloys, stainless steels and most 3d-transition metal MPEAs, including those without appreciable ductility. Therefore, in the present work it is shown that increasing the Cr content in Cr-Co-Ni alloys leads to a better combination of mechanical properties and corrosion resistance in saline environment, as observed especially for the Cr45Co27.5Ni27.5 alloy.
KW - Compositionally complex alloys
KW - Corrosion
KW - High entropy alloys
KW - Marine
KW - Multi-principal element alloys
KW - Toughness
UR - http://www.scopus.com/inward/record.url?scp=85111271238&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.161107
DO - 10.1016/j.jallcom.2021.161107
M3 - Article
SN - 0925-8388
VL - 884
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 161107
ER -