TY - JOUR
T1 - Cosmic ray models of the ridge-like excess of gamma rays in the Galactic Centre
AU - Macias, Oscar
AU - Gordon, Chris
AU - Crocker, Roland M.
AU - Profumo, Stefano
N1 - Publisher Copyright:
© 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - The High-Energy Stereoscopic System (HESS) has detected diffuse TeV emission correlated with the distribution of molecular gas along the Ridge at the Galactic Centre. Diffuse, nonthermal emission is also seen by the Fermi large area telescope (Fermi-LAT) in the GeV range and by radio telescopes in the GHz range. Additionally, there is a distinct, spherically symmetric excess of gamma rays seen by Fermi-LAT in the GeV range. A cosmic ray flare, occurring in the Galactic Centre, 104 yr ago has been proposed to explain the TeV Ridge. An alternative, steady-state model explaining all three data sets (TeV, GeV, and radio) invokes purely leptonic processes.We show that the flare model from the Galactic Centre also provides an acceptable fit to the GeV and radio data, provided the diffusion coefficient is energy independent. However, ifKolmogorov-type turbulence is assumed for the diffusion coefficient, we find that two flares are needed, one for the TeV data (occurring approximately 104 yr ago) and an older one for the GeV data (approximately 105 yr old).We find that the flare models we investigate do not fit the spherically symmetric GeV excess as well as the usual generalized Navarro-Frenk-White spatial profile, but are better suited to explain the Ridge.We also show that a range of single-zone, steady-state models are able to explain all three spectral data sets. Large gas densities equal to the volumetric average in the region can be accommodated by an energy-independent diffusion or streaming based steady-state model. Additionally, we investigate how the flare and steady-state models may be distinguished with future gamma-ray data looking for a spatial dependence of the gamma-ray spectral index.
AB - The High-Energy Stereoscopic System (HESS) has detected diffuse TeV emission correlated with the distribution of molecular gas along the Ridge at the Galactic Centre. Diffuse, nonthermal emission is also seen by the Fermi large area telescope (Fermi-LAT) in the GeV range and by radio telescopes in the GHz range. Additionally, there is a distinct, spherically symmetric excess of gamma rays seen by Fermi-LAT in the GeV range. A cosmic ray flare, occurring in the Galactic Centre, 104 yr ago has been proposed to explain the TeV Ridge. An alternative, steady-state model explaining all three data sets (TeV, GeV, and radio) invokes purely leptonic processes.We show that the flare model from the Galactic Centre also provides an acceptable fit to the GeV and radio data, provided the diffusion coefficient is energy independent. However, ifKolmogorov-type turbulence is assumed for the diffusion coefficient, we find that two flares are needed, one for the TeV data (occurring approximately 104 yr ago) and an older one for the GeV data (approximately 105 yr old).We find that the flare models we investigate do not fit the spherically symmetric GeV excess as well as the usual generalized Navarro-Frenk-White spatial profile, but are better suited to explain the Ridge.We also show that a range of single-zone, steady-state models are able to explain all three spectral data sets. Large gas densities equal to the volumetric average in the region can be accommodated by an energy-independent diffusion or streaming based steady-state model. Additionally, we investigate how the flare and steady-state models may be distinguished with future gamma-ray data looking for a spatial dependence of the gamma-ray spectral index.
KW - Cosmic rays
KW - Galaxy: centre
KW - Gamma-rays: galaxies
UR - http://www.scopus.com/inward/record.url?scp=84938152691&partnerID=8YFLogxK
U2 - 10.1093/mnras/stv1002
DO - 10.1093/mnras/stv1002
M3 - Article
SN - 0035-8711
VL - 451
SP - 1833
EP - 1847
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -