Abstract
Asteroid impact spherule layers and tsunami deposits underlying banded iron-formations in the Fortescue and Hamersley Groups have been further investigated to test their potential stratigraphic relationships. This work has included new observations related to the ca 2.63 Ga Jeerinah Impact Layer (JIL) and impact spherules associated with the 4th Shale-Macroband of the Dales Gorge Iron Member (DGS4) of the Brockman Iron Formation. A unit of impact spherules (microkrystite) correlated with the ca 2.63 Ga JIL is observed within a >100 m-thick fragmental-intraclast breccia pile in drill cores near Roy Hill. The sequence represents significant thickening of the impact/tsunami unit relative to the JIL type section at Hesta, as well as relative to the 20-30 m-thick ca 2.63 Ga Carawine Dolomite spherule-bearing mega-breccia. The ca 2.48 Ga-old Dales Gorge Member of the Brockman Iron Formation is underlain by an ∼0.5 m-thick rip-up clast breccia located at the top of the ca 2.50 Ga Mt McRae Shale, and is interpreted as a tsunami deposit. We suggest that the presence of impact ejecta and tsunami units stratigraphically beneath a number of banded iron-formations, and units of ferruginous shale in the Pilbara and South Africa may result from a genetic relationship. For example, it could be that under Archean atmospheric conditions, mafic volcanism triggered by large asteroid impacts enriched the oceans in soluble FeO. If so, seasonal microbial and/or photolytic oxidation to ferric oxide could have caused precipitation of Fe2O3 and silica. In view of the possible occurrence of depositional gaps and paraconformities between impact ejecta units and overlying ferruginous sediments, these relationships require further testing by isotopic age studies.
Original language | English |
---|---|
Pages (from-to) | 689-701 |
Number of pages | 13 |
Journal | Australian Journal of Earth Sciences |
Volume | 61 |
Issue number | 5 |
DOIs | |
Publication status | Published - Jul 2014 |