Critical behaviours of contact near phase transitions

Y. Y. Chen, Y. Z. Jiang, X. W. Guan*, Qi Zhou

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    23 Citations (Scopus)

    Abstract

    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition.

    Original languageEnglish
    Article number5140
    JournalNature Communications
    Volume5
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Dive into the research topics of 'Critical behaviours of contact near phase transitions'. Together they form a unique fingerprint.

    Cite this