TY - JOUR
T1 - Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision
AU - Cai, Kun
AU - Yang, Li Kui
AU - Shi, Jiao
AU - Qin, Qing Hua
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - For a resonator-based nano-balance, the capability of capturing a nanoparticle is essential for it to measure the mass of the particle. In the present study, a clamped-clamped nanobeam from a Boron-Nitride and Carbon (BNC) nanotube acts as the nano-balance, and a fullerene, e.g., C60, is chosen as the particle, and the capturing capability is quantitatively estimated by the minimal escape velocity (MEV) of the fullerene from the nanobeam after collision. When centrally colliding with the nanobeam, the escape of fullerene depends on both incidence of fullerene and temperature of the system. When the colliding in the Boron-Nitride (BN) area of the beam surface, the nanoball escapes easier than that at the carbon area. The MEV of the nanoball is lower at higher temperature. As the nanoball sometimes slides for a few pica-seconds on the beam surface before being bounced out, the nanoball can escape only when the beam surface can provide the nanoball enough kinetic energy to overcome the van der Waals interaction between them. The capturing capability of the nano-balance can, thus, be improved by reducing the initial kinetic energy of the system.
AB - For a resonator-based nano-balance, the capability of capturing a nanoparticle is essential for it to measure the mass of the particle. In the present study, a clamped-clamped nanobeam from a Boron-Nitride and Carbon (BNC) nanotube acts as the nano-balance, and a fullerene, e.g., C60, is chosen as the particle, and the capturing capability is quantitatively estimated by the minimal escape velocity (MEV) of the fullerene from the nanobeam after collision. When centrally colliding with the nanobeam, the escape of fullerene depends on both incidence of fullerene and temperature of the system. When the colliding in the Boron-Nitride (BN) area of the beam surface, the nanoball escapes easier than that at the carbon area. The MEV of the nanoball is lower at higher temperature. As the nanoball sometimes slides for a few pica-seconds on the beam surface before being bounced out, the nanoball can escape only when the beam surface can provide the nanoball enough kinetic energy to overcome the van der Waals interaction between them. The capturing capability of the nano-balance can, thus, be improved by reducing the initial kinetic energy of the system.
UR - http://www.scopus.com/inward/record.url?scp=85041603185&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-18789-7
DO - 10.1038/s41598-017-18789-7
M3 - Article
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 913
ER -