Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision

Kun Cai*, Li Kui Yang, Jiao Shi, Qing Hua Qin

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    For a resonator-based nano-balance, the capability of capturing a nanoparticle is essential for it to measure the mass of the particle. In the present study, a clamped-clamped nanobeam from a Boron-Nitride and Carbon (BNC) nanotube acts as the nano-balance, and a fullerene, e.g., C60, is chosen as the particle, and the capturing capability is quantitatively estimated by the minimal escape velocity (MEV) of the fullerene from the nanobeam after collision. When centrally colliding with the nanobeam, the escape of fullerene depends on both incidence of fullerene and temperature of the system. When the colliding in the Boron-Nitride (BN) area of the beam surface, the nanoball escapes easier than that at the carbon area. The MEV of the nanoball is lower at higher temperature. As the nanoball sometimes slides for a few pica-seconds on the beam surface before being bounced out, the nanoball can escape only when the beam surface can provide the nanoball enough kinetic energy to overcome the van der Waals interaction between them. The capturing capability of the nano-balance can, thus, be improved by reducing the initial kinetic energy of the system.

    Original languageEnglish
    Article number913
    JournalScientific Reports
    Volume8
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2018

    Fingerprint

    Dive into the research topics of 'Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision'. Together they form a unique fingerprint.

    Cite this