TY - GEN
T1 - Critical sampling rate for sampled-data consensus over random networks
AU - Wu, Junfeng
AU - Meng, Ziyang
AU - Yang, Tao
AU - Shi, Guodong
AU - Johansson, Karl Henrik
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/2/8
Y1 - 2015/2/8
N2 - In this paper, we consider the consensus problem for a network of nodes with random interactions and sampled-data control actions. Each node independently samples its neighbors in a random manner over a directed graph underlying the information exchange of different nodes. The relationship between the sampling rate and the achievement of consensus is studied. We first establish a sufficient condition, in terms of the inter-sampling interval, such that consensus in expectation, in mean square, and in almost sure sense are simultaneously achieved provided a mild connectivity assumption for the underlying graph. Necessary and sufficient conditions for mean-square consensus are derived in terms of the spectral radius of the corresponding state transition matrix. These conditions are then interpreted as the existence of a critical value on the inter-sampling interval, below which global mean-square consensus is achieved and above which the system diverges in mean-square sense for some initial states. Finally, we establish an upper bound of the inter-sampling interval, below which almost sure consensus is reached, and a lower bound, above which almost sure divergence is reached. An numerical example is given to validate the theoretical results.
AB - In this paper, we consider the consensus problem for a network of nodes with random interactions and sampled-data control actions. Each node independently samples its neighbors in a random manner over a directed graph underlying the information exchange of different nodes. The relationship between the sampling rate and the achievement of consensus is studied. We first establish a sufficient condition, in terms of the inter-sampling interval, such that consensus in expectation, in mean square, and in almost sure sense are simultaneously achieved provided a mild connectivity assumption for the underlying graph. Necessary and sufficient conditions for mean-square consensus are derived in terms of the spectral radius of the corresponding state transition matrix. These conditions are then interpreted as the existence of a critical value on the inter-sampling interval, below which global mean-square consensus is achieved and above which the system diverges in mean-square sense for some initial states. Finally, we establish an upper bound of the inter-sampling interval, below which almost sure consensus is reached, and a lower bound, above which almost sure divergence is reached. An numerical example is given to validate the theoretical results.
UR - http://www.scopus.com/inward/record.url?scp=84962016843&partnerID=8YFLogxK
U2 - 10.1109/CDC.2015.7402235
DO - 10.1109/CDC.2015.7402235
M3 - Conference contribution
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 412
EP - 417
BT - 54rd IEEE Conference on Decision and Control,CDC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 54th IEEE Conference on Decision and Control, CDC 2015
Y2 - 15 December 2015 through 18 December 2015
ER -