Abstract
In this modern era of precision medicine, molecular signatures identified from advanced omics technologies hold great promise to better guide clinical decisions. However, current approaches are often location-specific due to the inherent differences between platforms and across multiple centres, thus limiting the transferability of molecular signatures. We present Cross-Platform Omics Prediction (CPOP), a penalised regression model that can use omics data to predict patient outcomes in a platform-independent manner and across time and experiments. CPOP improves on the traditional prediction framework of using gene-based features by selecting ratio-based features with similar estimated effect sizes. These components gave CPOP the ability to have a stable performance across datasets of similar biology, minimising the effect of technical noise often generated by omics platforms. We present a comprehensive evaluation using melanoma transcriptomics data to demonstrate its potential to be used as a critical part of a clinical screening framework for precision medicine. Additional assessment of generalisation was demonstrated with ovarian cancer and inflammatory bowel disease studies.
Original language | English |
---|---|
Article number | 85 |
Journal | npj Digital Medicine |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2022 |