TY - JOUR
T1 - Cyto- and chemoarchitecture of the cortex of the tammar wallaby (Macropus eugenii)
T2 - Areal organization
AU - Ashwell, K. W.S.
AU - Zhang, L. L.
AU - Marotte, L. R.
PY - 2005/7
Y1 - 2005/7
N2 - We have examined the cyto- and chemoarchitecture of the isocortex of a diprotodontid marsupial, the tammar wallaby (Macropus eugenii), using Nissl staining in combination with enzyme histochemical (acetylcholinesterase - AChE, NADPH-diaphorase - NADPHd, cytochrome oxidase) and immunohistochemical (non-phosphorylated neurofilament - SMI-32) markers. The primary sensory cortex showed distinctive patterns of reactivity in cytochrome oxidase, acetylcholinesterase and NADPH diaphorase. For example, in AChE material, S1 showed a heterogeneous appearance, with regions exhibiting a double layer of AChE activity (layers II and IV) adjacent to poorly reactive regions. In NADPHd preparations, activity in S1 was strongest in layers I to IV although, as in AChE material, there were consistent patches of reduced NADPHd activity which corresponded to poorly reactive regions in the AChE sections. Each of the primary sensory areas of the isocortex showed a different pattern of distribution of SMI-32+ neurons. In V1, SMI-32+ neurons were distributed in two layers (III and V) throughout the tangential extent ofthat region. In S1, SMI-32+ neurons were concentrated in layer V, but large and discrete patches within S1 had additional SMI-32+ neurons in layer III. In primary auditory cortex there was a dense band of SMI-32+ neurons in layer V, with only occasional labeled pyramidal neurons in layer III. In the secondary sensory areas (V2 and S2) SMI-32+ neurons were either distributed in layers III and V (V2) or solely within layer V (S2). The tangential and laminar distribution of Type I reactive NADPH diaphorase neurons in the tammar wallaby cortex was more like that seen in eutheria than in polyprotodontid metatheria.
AB - We have examined the cyto- and chemoarchitecture of the isocortex of a diprotodontid marsupial, the tammar wallaby (Macropus eugenii), using Nissl staining in combination with enzyme histochemical (acetylcholinesterase - AChE, NADPH-diaphorase - NADPHd, cytochrome oxidase) and immunohistochemical (non-phosphorylated neurofilament - SMI-32) markers. The primary sensory cortex showed distinctive patterns of reactivity in cytochrome oxidase, acetylcholinesterase and NADPH diaphorase. For example, in AChE material, S1 showed a heterogeneous appearance, with regions exhibiting a double layer of AChE activity (layers II and IV) adjacent to poorly reactive regions. In NADPHd preparations, activity in S1 was strongest in layers I to IV although, as in AChE material, there were consistent patches of reduced NADPHd activity which corresponded to poorly reactive regions in the AChE sections. Each of the primary sensory areas of the isocortex showed a different pattern of distribution of SMI-32+ neurons. In V1, SMI-32+ neurons were distributed in two layers (III and V) throughout the tangential extent ofthat region. In S1, SMI-32+ neurons were concentrated in layer V, but large and discrete patches within S1 had additional SMI-32+ neurons in layer III. In primary auditory cortex there was a dense band of SMI-32+ neurons in layer V, with only occasional labeled pyramidal neurons in layer III. In the secondary sensory areas (V2 and S2) SMI-32+ neurons were either distributed in layers III and V (V2) or solely within layer V (S2). The tangential and laminar distribution of Type I reactive NADPH diaphorase neurons in the tammar wallaby cortex was more like that seen in eutheria than in polyprotodontid metatheria.
KW - Acetylcholinesterase
KW - Cytochrome oxidase
KW - Mammal
KW - Marsupial
KW - NADPH diaphorase
KW - Neocortex
KW - Neurofilament protein
KW - SMI-32 immunoreactivity
UR - http://www.scopus.com/inward/record.url?scp=23844437093&partnerID=8YFLogxK
U2 - 10.1159/000086230
DO - 10.1159/000086230
M3 - Article
SN - 0006-8977
VL - 66
SP - 114
EP - 136
JO - Brain, Behavior and Evolution
JF - Brain, Behavior and Evolution
IS - 2
ER -