Data mining in earth system science (DMESS 2011)

Forrest M. Hoffman, J. Walter Larson, Richard Tran Mills, Bjørn Gustaf J. Brooks, Auroop R. Ganguly, William W. Hargrove, Jian Huang, Jitendra Kumar, Ranga R. Vatsavai

    Research output: Contribution to journalConference articlepeer-review

    16 Citations (Scopus)

    Abstract

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques-such as cluster analysis, singular value decomposition, block entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks-are being applied to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop computers. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the Earth sciences.

    Original languageEnglish
    Pages (from-to)1450-1455
    Number of pages6
    JournalProcedia Computer Science
    Volume4
    DOIs
    Publication statusPublished - 2011
    Event11th International Conference on Computational Science, ICCS 2011 - Singapore, Singapore
    Duration: 1 Jun 20113 Jun 2011

    Fingerprint

    Dive into the research topics of 'Data mining in earth system science (DMESS 2011)'. Together they form a unique fingerprint.

    Cite this