Deblurring by Realistic Blurring

Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, Hongdong Li

    Research output: Contribution to journalConference articlepeer-review

    319 Citations (Scopus)

    Abstract

    Existing deep learning methods for image deblurring typically train models using pairs of sharp images and their blurred counterparts. However, synthetically blurring images does not necessarily model the blurring process in real-world scenarios with sufficient accuracy. To address this problem, we propose a new method which combines two GAN models, i.e., a learning-to-Blur GAN (BGAN) and learning-to-DeBlur GAN (DBGAN), in order to learn a better model for image deblurring by primarily learning how to blur images. The first model, BGAN, learns how to blur sharp images with unpaired sharp and blurry image sets, and then guides the second model, DBGAN, to learn how to correctly deblur such images. In order to reduce the discrepancy between real blur and synthesized blur, a relativistic blur loss is leveraged. As an additional contribution, this paper also introduces a Real-World Blurred Image (RWBI) dataset including diverse blurry images. Our experiments show that the proposed method achieves consistently superior quantitative performance as well as higher perceptual quality on both the newly proposed dataset and the public GOPRO dataset.

    Original languageEnglish
    Article number9156306
    Pages (from-to)2734-2743
    Number of pages10
    JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    DOIs
    Publication statusPublished - 2020
    Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
    Duration: 14 Jun 202019 Jun 2020

    Fingerprint

    Dive into the research topics of 'Deblurring by Realistic Blurring'. Together they form a unique fingerprint.

    Cite this