TY - JOUR
T1 - Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+
AU - Woolley, Matthew
AU - Ariafard, Alireza
AU - Khairallah, George N.
AU - Kwan, Kim H.
AU - Donnelly, Paul S.
AU - White, Jonathan M.
AU - Canty, Allan J.
AU - Yates, Brian F.
AU - O'Hair, Richard A.J.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2014/12/19
Y1 - 2014/12/19
N2 - Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)]+ (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)]+ yields the organometallic complex, [(phen)M(CH3)]+, via decarboxylation. [(phen)M(CH3)]+ reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)]+, with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)]+, occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)]+, are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)]+. The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.
AB - Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)]+ (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)]+ yields the organometallic complex, [(phen)M(CH3)]+, via decarboxylation. [(phen)M(CH3)]+ reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)]+, with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)]+, occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)]+, are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)]+. The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.
UR - http://www.scopus.com/inward/record.url?scp=84919664019&partnerID=8YFLogxK
U2 - 10.1021/jo501886w
DO - 10.1021/jo501886w
M3 - Article
C2 - 25329236
AN - SCOPUS:84919664019
SN - 0022-3263
VL - 79
SP - 12056
EP - 12069
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 24
ER -