TY - GEN
T1 - Decision-Focused Learning to Predict Action Costs for Planning
AU - Mandi, Jayanta
AU - Foschini, Marco
AU - Höller, Daniel
AU - Thiebaux, Sylvie
AU - Hoffmann, Jörg
AU - Guns, Tias
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/10/16
Y1 - 2024/10/16
N2 - In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
AB - In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
UR - http://www.scopus.com/inward/record.url?scp=85216697880&partnerID=8YFLogxK
U2 - 10.3233/FAIA240975
DO - 10.3233/FAIA240975
M3 - Conference contribution
AN - SCOPUS:85216697880
T3 - Frontiers in Artificial Intelligence and Applications
SP - 4060
EP - 4067
BT - ECAI 2024 - 27th European Conference on Artificial Intelligence, Including 13th Conference on Prestigious Applications of Intelligent Systems, PAIS 2024, Proceedings
A2 - Endriss, Ulle
A2 - Melo, Francisco S.
A2 - Bach, Kerstin
A2 - Bugarin-Diz, Alberto
A2 - Alonso-Moral, Jose M.
A2 - Barro, Senen
A2 - Heintz, Fredrik
PB - IOS Press BV
T2 - 27th European Conference on Artificial Intelligence, ECAI 2024
Y2 - 19 October 2024 through 24 October 2024
ER -