Decision region approximation by polynomials or neural networks

Kim L. Blackmore*, Robert C. Williamson, Iven M.Y. Mareels

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    We give degree of approximation results for decision regions which are defined by polynomial and neural network parametrizations. The volume of the misclassified region is used to measure the approximation error, and results for the degree of L1 approximation of functions are used. For polynomial parametrizations, we show that the degree of approximation is at least 1, whereas for neural network parametrizations we prove the slightly weaker result that the degree of approximation is at least r, where r can be any number in the open interval (0,1).

    Original languageEnglish
    Pages (from-to)903-907
    Number of pages5
    JournalIEEE Transactions on Information Theory
    Volume43
    Issue number3
    DOIs
    Publication statusPublished - 1997

    Fingerprint

    Dive into the research topics of 'Decision region approximation by polynomials or neural networks'. Together they form a unique fingerprint.

    Cite this