TY - GEN
T1 - Decomposing a scene into geometric and semantically consistent regions
AU - Gould, Stephen
AU - Fulton, Richard
AU - Koller, Daphne
PY - 2009
Y1 - 2009
N2 - High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions. Our model is defined in terms of a unified energy function over scene appearance and structure. We show how this energy function can be learned from data and present an efficient inference technique that makes use of multiple over-segmentations of the image to propose moves in the energy-space. We show, experimentally, that our method achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning. Finally, by understanding region classes and geometry, we show how our model can be used as the basis for 3D reconstruction of the scene.
AB - High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions. Our model is defined in terms of a unified energy function over scene appearance and structure. We show how this energy function can be learned from data and present an efficient inference technique that makes use of multiple over-segmentations of the image to propose moves in the energy-space. We show, experimentally, that our method achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning. Finally, by understanding region classes and geometry, we show how our model can be used as the basis for 3D reconstruction of the scene.
UR - http://www.scopus.com/inward/record.url?scp=77953205895&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2009.5459211
DO - 10.1109/ICCV.2009.5459211
M3 - Conference contribution
SN - 9781424444205
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 1
EP - 8
BT - 2009 IEEE 12th International Conference on Computer Vision, ICCV 2009
T2 - 12th International Conference on Computer Vision, ICCV 2009
Y2 - 29 September 2009 through 2 October 2009
ER -