@inproceedings{7c3c3431a9214ca78e724518fd6f21fc,
title = "Deep Novel View Synthesis from Colored 3D Point Clouds",
abstract = "We propose a new deep neural network which takes a colored 3D point cloud of a scene as input, and synthesizes a photo-realistic image from a novel viewpoint. Key contributions of this work include a deep point feature extraction module, an image synthesis module, and a refinement module. Our PointEncoder network extracts discriminative features from the point cloud that contain both local and global contextual information about the scene. Next, the multi-level point features are aggregated to form multi-layer feature maps, which are subsequently fed into an ImageDecoder network to generate a synthetic RGB image. Finally, the output of the ImageDecoder network is refined using a RefineNet module, providing finer details and suppressing unwanted visual artifacts. W rotate and translate the 3D point cloud in order to synthesize new images from a novel perspective. We conduct numerous experiments on public datasets to validate the method in terms of quality of the synthesized views.",
keywords = "3D point clouds, Image synthesis, Virtual views",
author = "Zhenbo Song and Wayne Chen and Dylan Campbell and Hongdong Li",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 16th European Conference on Computer Vision, ECCV 2020 ; Conference date: 23-08-2020 Through 28-08-2020",
year = "2020",
doi = "10.1007/978-3-030-58586-0_1",
language = "English",
isbn = "9783030585853",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "1--17",
editor = "Andrea Vedaldi and Horst Bischof and Thomas Brox and Jan-Michael Frahm",
booktitle = "Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings",
address = "Germany",
}