Deep salient object detection by integrating multi-level cues

Jing Zhang, Yuchao Dai, Fatih Porikli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Citations (Scopus)

Abstract

A key problem in salient object detection is how to effectively exploit the multi-level saliency cues in a unified and data-driven manner. In this paper, building upon the recent success of deep neural networks, we propose a fully convolutional neural network based approach empowered with multi-level fusion to salient object detection. By integrating saliency cues at different levels through fully convolutional neural networks and multi-level fusion, our approach could effectively exploit both learned semantic cues and higher-order region statistics for edge-Accurate salient object detection. First, we fine-Tune a fully convolutional neural network for semantic segmentation to adapt it to salient object detection to learn a suitable yet coarse perpixel saliency prediction map. This map is often smeared across salient object boundaries since the local receptive fields in the convolutional network apply naturally on both sides of such boundaries. Second, to enhance the resolution of the learned saliency prediction and to incorporate higher-order cues that are omitted by the neural network, we propose a multi-level fusion approach where super-pixel level coherency in saliency is exploited. Our extensive experimental results on various benchmark datasets demonstrate that the proposed method outperforms the state-of the-Art approaches.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-10
Number of pages10
ISBN (Electronic)9781509048229
DOIs
Publication statusPublished - 11 May 2017
Event17th IEEE Winter Conference on Applications of Computer Vision, WACV 2017 - Santa Rosa, United States
Duration: 24 Mar 201731 Mar 2017

Publication series

NameProceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017

Conference

Conference17th IEEE Winter Conference on Applications of Computer Vision, WACV 2017
Country/TerritoryUnited States
CitySanta Rosa
Period24/03/1731/03/17

Fingerprint

Dive into the research topics of 'Deep salient object detection by integrating multi-level cues'. Together they form a unique fingerprint.

Cite this