Deep stacked hierarchical multi-patch network for image deblurring

Hongguang Zhang, Yuchao Dai, Hongdong Li, Piotr Koniusz

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    511 Citations (Scopus)

    Abstract

    Despite deep end-to-end learning methods have shown their superiority in removing non-uniform motion blur, there still exist major challenges with the current multi-scale and scale-recurrent models: 1) Deconvolution/upsampling operations in the coarse-to-fine scheme result in expensive runtime; 2) Simply increasing the model depth with finer-scale levels cannot improve the quality of deblurring. To tackle the above problems, we present a deep {hierarchical multi-patch network} inspired by Spatial Pyramid Matching to deal with blurry images via a fine-to-coarse hierarchical representation. To deal with the performance saturation w.r.t. depth, we propose a stacked version of our multi-patch model. Our proposed basic multi-patch model achieves the state-of-the-art performance on the GoPro dataset while enjoying a 40times faster runtime compared to current multi-scale methods. With 30ms to process an image at 1280times720 resolution, it is the first real-time deep motion deblurring model for 720p images at 30fps. For stacked networks, significant improvements (over 1.2dB) are achieved on the GoPro dataset by increasing the network depth. Moreover, by varying the depth of the stacked model, one can adapt the performance and runtime of the same network for different application scenarios.

    Original languageEnglish
    Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
    PublisherIEEE Computer Society
    Pages5971-5979
    Number of pages9
    ISBN (Electronic)9781728132938
    DOIs
    Publication statusPublished - Jun 2019
    Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
    Duration: 16 Jun 201920 Jun 2019

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2019-June
    ISSN (Print)1063-6919

    Conference

    Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
    Country/TerritoryUnited States
    CityLong Beach
    Period16/06/1920/06/19

    Fingerprint

    Dive into the research topics of 'Deep stacked hierarchical multi-patch network for image deblurring'. Together they form a unique fingerprint.

    Cite this