Abstract
A fundamental problem in any communication system is: given a communication channel between a transmitter and a receiver, how many independent signals can be exchanged between them? Arbitrary communication channels that can be described by linear compact channel operators mapping between normed spaces are examined in this paper. The (well-known) notions of degrees of freedom (DOF) at level ε and essential dimension of such channels are developed in this general setting. We argue that the DOF at level εand the essential dimension fundamentally limit the number of independent signals that can be exchanged between the transmitter and the receiver. We also generalize the concept of singular values of compact operators to be applicable to compact operators defined on arbitrary normed spaces which do not necessarily carry a Hilbert space structure. We show how these generalized singular values, which we call DOF singular values, can be used to calculate the DOF at level ε and the essential dimension of compact operators that describe communication channels. We describe physically realistic channels that require such general channel models.
Original language | English |
---|---|
Article number | 5437422 |
Pages (from-to) | 1560-1573 |
Number of pages | 14 |
Journal | IEEE Transactions on Information Theory |
Volume | 56 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2010 |