TY - JOUR
T1 - Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages
AU - Spensberger, Dominik
AU - Kotsopoulou, Ekaterini
AU - Ferreira, Rita
AU - Broccardo, Cyril
AU - Scott, Linda M.
AU - Fourouclas, Nasios
AU - Ottersbach, Katrin
AU - Green, Anthony R.
AU - Göttgens, Berthold
PY - 2012/7
Y1 - 2012/7
N2 - The stem cell leukemia (Scl)/Tal1 gene is essential for normal blood and endothelial development, and is expressed in hematopoietic stem cells (HSCs), progenitors, erythroid, megakaryocytic, and mast cells. The Scl +19 enhancer is active in HSCs and progenitor cells, megakaryocytes, and mast cells, but not mature erythroid cells. Here we demonstrate that in vivo deletion of the Scl +19 enhancer (SclΔ19/Δ19) results in viable mice with normal Scl expression in mature hematopoietic lineages. By contrast, Scl expression is reduced in the stem/progenitor compartment and flow cytometry analysis revealed that the HSC and megakaryocyte-erythroid progenitor populations are enlarged in SclΔ19/Δ19 mice. The increase in HSC numbers contributed to enhanced expansion in bone marrow transplantation assays, but did not affect multilineage repopulation or stress responses. These results affirm that the Scl +19 enhancer plays a key role in the development of hematopoietic stem/progenitor cells, but is not necessary for mature hematopoietic lineages. Moreover, active histone marks across the Scl locus were significantly reduced in SclΔ19/Δ19 fetal liver cells without major changes in steady-state messenger RNA levels, suggesting post-transcriptional compensation for loss of a regulatory element, a result that might be widely relevant given the frequent observation of mild phenotypes after deletion of regulatory elements.
AB - The stem cell leukemia (Scl)/Tal1 gene is essential for normal blood and endothelial development, and is expressed in hematopoietic stem cells (HSCs), progenitors, erythroid, megakaryocytic, and mast cells. The Scl +19 enhancer is active in HSCs and progenitor cells, megakaryocytes, and mast cells, but not mature erythroid cells. Here we demonstrate that in vivo deletion of the Scl +19 enhancer (SclΔ19/Δ19) results in viable mice with normal Scl expression in mature hematopoietic lineages. By contrast, Scl expression is reduced in the stem/progenitor compartment and flow cytometry analysis revealed that the HSC and megakaryocyte-erythroid progenitor populations are enlarged in SclΔ19/Δ19 mice. The increase in HSC numbers contributed to enhanced expansion in bone marrow transplantation assays, but did not affect multilineage repopulation or stress responses. These results affirm that the Scl +19 enhancer plays a key role in the development of hematopoietic stem/progenitor cells, but is not necessary for mature hematopoietic lineages. Moreover, active histone marks across the Scl locus were significantly reduced in SclΔ19/Δ19 fetal liver cells without major changes in steady-state messenger RNA levels, suggesting post-transcriptional compensation for loss of a regulatory element, a result that might be widely relevant given the frequent observation of mild phenotypes after deletion of regulatory elements.
UR - http://www.scopus.com/inward/record.url?scp=84862573251&partnerID=8YFLogxK
U2 - 10.1016/j.exphem.2012.02.006
DO - 10.1016/j.exphem.2012.02.006
M3 - Article
C2 - 22401818
AN - SCOPUS:84862573251
SN - 0301-472X
VL - 40
SP - 588-598.e1
JO - Experimental Hematology
JF - Experimental Hematology
IS - 7
ER -