Denoising wavefront sensor images with deep neural networks

B. Pou*, E. Quiñones, D. Gratadour, M. Martin

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

A classical closed-loop adaptive optics system with a Shack-Hartmann wavefront sensor (WFS) relies on a center of gravity approach to process the WFS information and an integrator with gain to produce the commands to a Deformable Mirror (DM) to compensate wavefront perturbations. In this kind of systems, noise in the WFS images can propagate to errors in centroids computation, and thus, lead the AO system to perform poorly in closed-loop operations. In this work, we present a deep supervised learning method to denoise the WFS images based on convolutional denoising autoencoders. Our method is able to denoise the images up to a high noise level and improve the integrator performance almost to the level of a noise-free situation.

Original languageEnglish
Title of host publicationAdaptive Optics Systems VII
EditorsLaura Schreiber, Dirk Schmidt, Elise Vernet
PublisherSPIE
ISBN (Electronic)9781510636835
DOIs
Publication statusPublished - 2020
EventAdaptive Optics Systems VII 2020 - Virtual, Online, United States
Duration: 14 Dec 202022 Dec 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11448
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceAdaptive Optics Systems VII 2020
Country/TerritoryUnited States
CityVirtual, Online
Period14/12/2022/12/20

Fingerprint

Dive into the research topics of 'Denoising wavefront sensor images with deep neural networks'. Together they form a unique fingerprint.

Cite this