Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses

Zhuodong Fan, Kunlun Yan, Limeng Zhang, Jingshuang Qin, Jinbo Chen, Rongping Wang, Xiang Shen

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

In this paper, we report the fabrication and characterization of chalcogenide-based planar waveguides for possible applications in broadband light sources and/or biochemical sensing. Ge11.5As24Se64.5 film as bottom cladding followed by another layer of As2Se3 was deposited on a thermally oxidized silicon wafer using thermal evaporation, and the waveguides were patterned directly on the As2Se3 layer by UV exposure followed by inductively coupled plasma dry etching. The device structure was optimized by using commercial software (COMSOL Multiphysics) based on complete vector finite components, and the fundamental mode of the waveguide was calculated. By optimizing the geometry of the waveguide, the zero dispersion wavelength was shifted to a short wavelength (at ∼ 2.3 µm), which facilitates supercontinuum generation with shorter wavelength pump source. The insertion loss of the rib waveguides with different widths was measured using the cut-back method, and the best propagation loss at 1550 nm was 1.4 dB/cm.

Original languageEnglish
Pages (from-to)1564-1568
Number of pages5
JournalApplied Optics
Volume59
Issue number6
DOIs
Publication statusPublished - 20 Feb 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses'. Together they form a unique fingerprint.

Cite this