Design concept for Pocket-GMT

M. Lingham, A. Bouchez, L. Gers, N. Herrald, J. Munro, T. Travouillon

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Abstract

    One of the main challenges for the new generation of extremely large telescopes (ELT) such as the Giant Magellan Telescope (GMT) is apparent in their ability to phase the segments in their primary mirror. Due to the lack of viability of manufacturing enormous mirrors, these primary mirrors are composed of smaller segments, and therefore they must be phased. Prior to the full construction of GMT, there has been proposal to develop a small-scale laboratory testbed to reproduce elements of GMT's design, major disturbances, and control systems. This would serve to reduce the risk in cost and time prior to commissioning. The team at the Australian National University's (ANU) Research School of Astronomy and Astrophysics (RSAA) have developed a design concept for such a miniature version, coined Pocket-GMT. Pocket-GMT is designed to simulate GMT's segmented primary mirror as well as introduce aberrations and distortions similar to what GMT will experience. This would present an opportunity to optimize the functionality of GMT's control software and wavefront sensors, and to demonstrate phasing within the laboratory prior to full-scale telescope implementation. Pocket-GMT would also be compatible with later GMT instrument prototypes, thus ensuring its usefulness going into the future.

    Original languageEnglish
    Title of host publicationAdvances in Optical Astronomical Instrumentation 2019
    EditorsSimon Ellis, Celine d'Orgeville
    PublisherSPIE
    ISBN (Electronic)9781510631465
    DOIs
    Publication statusPublished - 2020
    EventAdvances in Optical Astronomical Instrumentation 2019 - Melbourne, Australia
    Duration: 9 Dec 201912 Dec 2019

    Publication series

    NameProceedings of SPIE - The International Society for Optical Engineering
    Volume11203
    ISSN (Print)0277-786X
    ISSN (Electronic)1996-756X

    Conference

    ConferenceAdvances in Optical Astronomical Instrumentation 2019
    Country/TerritoryAustralia
    CityMelbourne
    Period9/12/1912/12/19

    Fingerprint

    Dive into the research topics of 'Design concept for Pocket-GMT'. Together they form a unique fingerprint.

    Cite this