Abstract
The design of infectious disease studies has received little attention because they are generally viewed as observational studies. That is, epidemic and endemic disease transmission happens and we observe it. We argue here that statistical design often provides useful guidance for such studies with regard to type of data and the size of the data set to be collected. It is shown that data on disease transmission in part of the community enables the estimation of central parameters and it is possible to compute the sample size required to make inferences with a desired precision. We illustrate this for data on disease transmission in a single community of uniformly mixing individuals and for data on outbreak sizes in households. Data on disease transmission is usually incomplete and this creates an identifiability problem for certain parameters of multitype epidemic models. We identify designs that can overcome this problem for the important objective of estimating parameters that help to assess the effectiveness of a vaccine. With disease transmission in animal groups there is greater scope for conducting planned experiments and we explore some possibilities for such experiments. The topic is largely unexplored and numerous open research problems in the area of statistical design of infectious disease data are mentioned.
Original language | English |
---|---|
Pages (from-to) | 41-66 |
Number of pages | 26 |
Journal | Journal of Statistical Planning and Inference |
Volume | 96 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jun 2001 |