Abstract
A three-dimensional compound parabolic concentrator (CPC) is designed for high-temperature solar thermochemical applications driven by radiation from a multi-source high-flux solar simulator. The basic geometrical parameters of the CPC including the acceptance angle and the entry aperture radius are determined using optical simulations. A cooling system for overheating protection is designed using engineering heat transfer correlations. A prototype CPC is manufactured using additive manufacturing and single point diamond turning techniques. The optical simulations show that the CPC increases the concentration ratio by a factor of 4.1 at an optical efficiency of 85.4%, reduces spillage loss from 78.9% to 32.1%, and reduces the flux non-uniformity on the target surface.
Original language | English |
---|---|
Pages (from-to) | 805-811 |
Number of pages | 7 |
Journal | Solar Energy |
Volume | 183 |
DOIs | |
Publication status | Published - 1 May 2019 |