Abstract
This paper describes our experience with applying data mining techniques to the problem of fraud detection in spatio-temporal health data in Medicare Australia. A modular framework that brings together disparate data mining techniques is adopted. Several generally applicable techniques for extracting features from spatial and temporal data are also discussed. The system was evaluated with input from domain experts and was found to achieve high hit rates. We also discuss some lessons drawn from the experience.
Original language | English |
---|---|
Title of host publication | IEEE International Conference on Data Mining (ICDM 2010) proceedings |
Editors | Conference Program Committee |
Place of Publication | Piscataway USA |
Publisher | IEEE Computer Society |
Edition | Peer Reviewed |
ISBN (Print) | 9780769542560 |
Publication status | Published - 2010 |
Event | IEEE International Conference on Data Mining (ICDM 2010) - Sydney Australia, Australia Duration: 1 Jan 2010 → … |
Conference
Conference | IEEE International Conference on Data Mining (ICDM 2010) |
---|---|
Country/Territory | Australia |
Period | 1/01/10 → … |
Other | December 14-17 2010 |