Detecting Variability in Massive Astronomical Time-series Data. III. Variable Candidates in the SuperWASP DR1 Found by Multiple Clustering Algorithms and a Consensus Clustering Method

Min Su Shin, Seo Won Chang, Hahn Yi, Dae Won Kim, Myung Jin Kim, Yong Ik Byun

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)

    Abstract

    We determine candidate variable sources in the SuperWASP Data Release 1 (DR1) using multiple clustering methods and identifying variable candidates as outliers from large clusters. We extract 15,788,814 light curves that have more than 15 photometric measurements in the SuperWASP DR1. Variations in the light curves are described in terms of nine variability features that are complementary to each other. We consider three different clustering methods based on Gaussian mixture models, including one that was used in our previous work, assuming that real variable candidates can be found as minor clusters and at a distant from major clusters, which correspond to non-variable objects. The three different methods with a broad level of speed and precision prove that we can select a suitable method for detecting variable light curves, depending on the speed and precision constraints on clustering. We also consider a consensus clustering method that combines clustering results obtained using multiple clustering methods. The consensus clustering method improves the reliability of detecting variable candidates by combining information that is learned from a given data set by multiple methods. As a complete variability analysis of the public SuperWASP light curves, we provide clustering results obtained by using an infinite Gaussian mixture model in the framework of variational Bayesian inference, as well as variability indices of the light curves in an online database to help others exploit the SuperWASP data.

    Original languageEnglish
    Article number201
    JournalAstronomical Journal
    Volume156
    Issue number5
    DOIs
    Publication statusPublished - Nov 2018

    Fingerprint

    Dive into the research topics of 'Detecting Variability in Massive Astronomical Time-series Data. III. Variable Candidates in the SuperWASP DR1 Found by Multiple Clustering Algorithms and a Consensus Clustering Method'. Together they form a unique fingerprint.

    Cite this