Device Performance of Emerging Photovoltaic Materials (Version 1)

Osbel Almora*, Derya Baran, Guillermo C. Bazan, Christian Berger, Carlos I. Cabrera, Kylie R. Catchpole, Sule Erten-Ela, Fei Guo, Jens Hauch, Anita W.Y. Ho-Baillie, T. Jesper Jacobsson, Rene A.J. Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A. Loi, Richard R. Lunt, Xavier Mathew, Michael D. McGehee, Jie MinDavid B. Mitzi, Mohammad K. Nazeeruddin, Jenny Nelson, Ana F. Nogueira, Ulrich W. Paetzold, Nam Gyu Park, Barry P. Rand, Uwe Rau, Henry J. Snaith, Eva Unger, Lídice Vaillant-Roca, Hin Lap Yip, Christoph J. Brabec*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    129 Citations (Scopus)

    Abstract

    Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs.

    Original languageEnglish
    Article number2002774
    JournalAdvanced Energy Materials
    Volume11
    Issue number11
    DOIs
    Publication statusPublished - 18 Mar 2021

    Fingerprint

    Dive into the research topics of 'Device Performance of Emerging Photovoltaic Materials (Version 1)'. Together they form a unique fingerprint.

    Cite this