TY - JOUR
T1 - DFNets
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
AU - Wijesinghe, Asiri
AU - Wang, Qing
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - We propose a novel spectral convolutional neural network (CNN) model on graph structured data, namely Distributed Feedback-Looped Networks (DFNets). This model is incorporated with a robust class of spectral graph filters, called feedback-looped filters, to provide better localization on vertices, while still attaining fast convergence and linear memory requirements. Theoretically, feedback-looped filters can guarantee convergence w.r.t. a specified error bound, and be applied universally to any graph without knowing its structure. Furthermore, the propagation rule of this model can diversify features from the preceding layers to produce strong gradient flows. We have evaluated our model using two benchmark tasks: semi-supervised document classification on citation networks and semi-supervised entity classification on a knowledge graph. The experimental results show that our model considerably outperforms the state-of-the-art methods in both benchmark tasks over all datasets.
AB - We propose a novel spectral convolutional neural network (CNN) model on graph structured data, namely Distributed Feedback-Looped Networks (DFNets). This model is incorporated with a robust class of spectral graph filters, called feedback-looped filters, to provide better localization on vertices, while still attaining fast convergence and linear memory requirements. Theoretically, feedback-looped filters can guarantee convergence w.r.t. a specified error bound, and be applied universally to any graph without knowing its structure. Furthermore, the propagation rule of this model can diversify features from the preceding layers to produce strong gradient flows. We have evaluated our model using two benchmark tasks: semi-supervised document classification on citation networks and semi-supervised entity classification on a knowledge graph. The experimental results show that our model considerably outperforms the state-of-the-art methods in both benchmark tasks over all datasets.
UR - http://www.scopus.com/inward/record.url?scp=85090171383&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85090171383
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 8 December 2019 through 14 December 2019
ER -