Diagnosability testing with satisfiability algorithms

Jussi Rintanen, Alban Grastien

    Research output: Contribution to journalConference articlepeer-review

    35 Citations (Scopus)

    Abstract

    We show how testing whether a system is diagnosable can be reduced to the satisfiability problem and how satisfiability algorithms yield a very efficient approach to testing diagnosability. Diagnosability is the question whether it is always possible to know whether a given system has exhibited a failure behavior. This is a basic question that underlies diagnosis, and it is also closely related to more general questions about the possibility to know given facts about system behavior. The work combines the twin plant construct of Jiang et al., which is the basis of diagnosability testing of systems with an enumerative representation, and SAT-based techniques to AI planning which form a very promising approach to finding paths in very large transition graphs.

    Original languageEnglish
    Pages (from-to)532-537
    Number of pages6
    JournalIJCAI International Joint Conference on Artificial Intelligence
    Publication statusPublished - 2007
    Event20th International Joint Conference on Artificial Intelligence, IJCAI 2007 - Hyderabad, India
    Duration: 6 Jan 200712 Jan 2007

    Fingerprint

    Dive into the research topics of 'Diagnosability testing with satisfiability algorithms'. Together they form a unique fingerprint.

    Cite this