TY - JOUR
T1 - Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L.
AU - Li, Li
AU - Liu, Fang
AU - Li, Wenfeng
AU - Li, Zhiguo
AU - Pan, Jiao
AU - Yan, Limin
AU - Zhang, Shaowu
AU - Huang, Zachary Y.
AU - Su, Songkun
PY - 2012/11
Y1 - 2012/11
N2 - Many studies have established that microRNAs (miRNAs) regulate gene expression in various biological processes in mammals and insects including honey bees. Dancing behavior is a form of communication unique to honey bees. However, it remains unclear which miRNAs regulate the dancing behavior in honey bees, and how. In the present study, total small RNAs (sRNAs) in Apis mellifera foragers and dancers were extracted and analyzed by a Solexa Sequencer to determine differentially expressed miRNAs. A small percentage (12.62%) of the unique sRNAs (the number of sequence types) were shared between foragers and dancers, but their expression accounted for 92.92% of the total sRNAs (the number of all sequence reads), and the length of them centered around 22. nt. Out of 58 previously identified miRNAs, 54 were present in both foragers and dancers and most of them were down-regulated in dancers. The fold-changes of ame-miR-34, ame-miR-210, ame-miR-278 and ame-miR-282 were higher than 2. 86 and 104 novel miRNAs were detected in foragers and dancers, respectively. Furthermore, two known miRNAs (ame-miR-278 and ame-miR-282) were confirmed, by qPCR, to have lower expressions in dancers. The target genes of ame-miR-278 and ame-miR-282 were associated with kinase, neural function, synaptotagmin and energy. These results indicate that miRNAs are substantially different between the foraging and dancing stages, and suggest that miRNAs might play important roles in regulating dancing behaviors in honey bees.
AB - Many studies have established that microRNAs (miRNAs) regulate gene expression in various biological processes in mammals and insects including honey bees. Dancing behavior is a form of communication unique to honey bees. However, it remains unclear which miRNAs regulate the dancing behavior in honey bees, and how. In the present study, total small RNAs (sRNAs) in Apis mellifera foragers and dancers were extracted and analyzed by a Solexa Sequencer to determine differentially expressed miRNAs. A small percentage (12.62%) of the unique sRNAs (the number of sequence types) were shared between foragers and dancers, but their expression accounted for 92.92% of the total sRNAs (the number of all sequence reads), and the length of them centered around 22. nt. Out of 58 previously identified miRNAs, 54 were present in both foragers and dancers and most of them were down-regulated in dancers. The fold-changes of ame-miR-34, ame-miR-210, ame-miR-278 and ame-miR-282 were higher than 2. 86 and 104 novel miRNAs were detected in foragers and dancers, respectively. Furthermore, two known miRNAs (ame-miR-278 and ame-miR-282) were confirmed, by qPCR, to have lower expressions in dancers. The target genes of ame-miR-278 and ame-miR-282 were associated with kinase, neural function, synaptotagmin and energy. These results indicate that miRNAs are substantially different between the foraging and dancing stages, and suggest that miRNAs might play important roles in regulating dancing behaviors in honey bees.
KW - Apis mellifera ligustica
KW - Dancing behavior
KW - Foraging behavior
KW - MicroRNAs
UR - http://www.scopus.com/inward/record.url?scp=84867889736&partnerID=8YFLogxK
U2 - 10.1016/j.jinsphys.2012.08.008
DO - 10.1016/j.jinsphys.2012.08.008
M3 - Article
SN - 0022-1910
VL - 58
SP - 1438
EP - 1443
JO - Journal of Insect Physiology
JF - Journal of Insect Physiology
IS - 11
ER -