Differentiable Neural Surface Refinement for Modeling Transparent Objects

Weijian Deng, Dylan Campbell, Chunyi Sun, Shubham Kanitkar, Matthew E. Shaffer, Stephen Gould

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

Neural implicit surface reconstruction leveraging volume rendering has led to significant advances in multi-view reconstruction. However, results for transparent objects can be very poor, primarily because the rendering function fails to account for the intricate light transport induced by refraction and reflection. In this study, we introduce trans-parent neural surface refinement (TNSR), a novel surface reconstruction framework that explicitly incorporates phys-ical refraction and reflection tracing. Beginning with an initial, approximate surface, our method employs sphere tracing combined with Snell's law to cast both reflected and refracted rays. Central to our proposal is an innovative differentiable technique devised to allow signals from the pho-tometric evidence to propagate back to the surface model by considering how the surface bends and reflects light rays. This allows us to connect surface refinement with volume rendering, enabling end-to-end optimization solely on multi-view RGB images. In our experiments, TNSR demonstrates significant improvements in novel view synthesis and geometry estimation of transparent objects, without prior knowledge of the refractive index.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages20268-20277
Number of pages10
ISBN (Electronic)9798350353006
DOIs
Publication statusPublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Fingerprint

Dive into the research topics of 'Differentiable Neural Surface Refinement for Modeling Transparent Objects'. Together they form a unique fingerprint.

Cite this