TY - JOUR
T1 - Differential shrinkage of mesophyll cells in transpiring cotton leaves
T2 - Implications for static and dynamic pools of water, and for water transport pathways
AU - Canny, Martin
AU - Wong, Suan Chin
AU - Huang, Cheng
AU - Miller, Celia
PY - 2012
Y1 - 2012
N2 - Shrinkage of palisade cells during transpiration, previously measured for sclerophyllous leaves of Eucalyptus where cells shrank equally, was compared with shrinkage in thin mesophytic leaves of cotton (Gossypium hirsutum L.). Selected vapour pressure differences (e) from 0.6 to 2.7kPa were imposed during steady-state photosynthesis and transpiration. Leaves were then cryo-fixed and cryo-planed paradermally, and images obtained with a cryo-scanning electron microscope (CSEM). Diameters of palisade 'cavity cells' within sub-stomatal cavities, and surrounding palisade 'matrix cells' were measured on CSEM images. Cavity and spongy mesophyll cells shrank progressively down to Δe=2.7kPa, while matrix cells remained at the same diameter at all Δe. Diameters were also measured of cavity and matrix cells quasi-equilibrated with relative humidities (RHs) from 100% to 86%. In leaves quasi-equilibrated with 95% RH, the cavity cells shrank so much as to be almost unmeasurable, while matrix cells shrank by only 6%. These data suggest that there are two distinct pools of water in cotton leaves: cavity plus spongy mesophyll cells (two-thirds of leaf volume) which easily lose water; and matrix cells (one-third of leaf volume), which retain turgor down to relative water loss=0.4, providing structural rigidity to prevent wilting. This phenomenon is probably widespread among mesophytic leaves.
AB - Shrinkage of palisade cells during transpiration, previously measured for sclerophyllous leaves of Eucalyptus where cells shrank equally, was compared with shrinkage in thin mesophytic leaves of cotton (Gossypium hirsutum L.). Selected vapour pressure differences (e) from 0.6 to 2.7kPa were imposed during steady-state photosynthesis and transpiration. Leaves were then cryo-fixed and cryo-planed paradermally, and images obtained with a cryo-scanning electron microscope (CSEM). Diameters of palisade 'cavity cells' within sub-stomatal cavities, and surrounding palisade 'matrix cells' were measured on CSEM images. Cavity and spongy mesophyll cells shrank progressively down to Δe=2.7kPa, while matrix cells remained at the same diameter at all Δe. Diameters were also measured of cavity and matrix cells quasi-equilibrated with relative humidities (RHs) from 100% to 86%. In leaves quasi-equilibrated with 95% RH, the cavity cells shrank so much as to be almost unmeasurable, while matrix cells shrank by only 6%. These data suggest that there are two distinct pools of water in cotton leaves: cavity plus spongy mesophyll cells (two-thirds of leaf volume) which easily lose water; and matrix cells (one-third of leaf volume), which retain turgor down to relative water loss=0.4, providing structural rigidity to prevent wilting. This phenomenon is probably widespread among mesophytic leaves.
KW - cell interconnections
KW - relative water loss
KW - sites of evaporation
KW - stomatal cavities
KW - transpiration pathway
KW - wilting resistance
UR - http://www.scopus.com/inward/record.url?scp=84863115675&partnerID=8YFLogxK
U2 - 10.1071/FP11172
DO - 10.1071/FP11172
M3 - Article
SN - 1445-4408
VL - 39
SP - 91
EP - 102
JO - Functional Plant Biology
JF - Functional Plant Biology
IS - 2
ER -