Direct Growth of Light-Emitting III-V Nanowires on Flexible Plastic Substrates

Vladislav Khayrudinov*, Maxim Remennyi, Vidur Raj, Prokhor Alekseev, Boris Matveev, Harri Lipsanen, Tuomas Haggren*, Tuomas Haggren*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    28 Citations (Scopus)

    Abstract

    Semiconductor nanowires are routinely grown on high-priced crystalline substrates as it is extremely challenging to grow directly on plastics and flexible substrates due to high-temperature requirements and substrate preparation. At the same time, plastic substrates can offer many advantages such as extremely low price, light weight, mechanical flexibility, shock and thermal resistance, and biocompatibility. We explore the direct growth of high-quality III-V nanowires on flexible plastic substrates by metal-organic vapor phase epitaxy (MOVPE). We synthesize InAs and InP nanowires on polyimide and show that the fabricated NWs are optically active with strong light emission in the mid-infrared range. We create a monolithic flexible nanowire-based p-n junction device on plastic in just two fabrication steps. Overall, we demonstrate that III-V nanowires can be synthesized directly on flexible plastic substrates inside a MOVPE reactor, and we believe that our results will further advance the development of the nanowire-based flexible electronic devices.

    Original languageEnglish
    Pages (from-to)7484-7491
    Number of pages8
    JournalACS Nano
    Volume14
    Issue number6
    DOIs
    Publication statusPublished - 23 Jun 2020

    Fingerprint

    Dive into the research topics of 'Direct Growth of Light-Emitting III-V Nanowires on Flexible Plastic Substrates'. Together they form a unique fingerprint.

    Cite this