Direct numerical simulation of radiation pressure-driven turbulence and winds in star clusters and galactic disks

Mark R. Krumholz*, Todd A. Thompson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

179 Citations (Scopus)

Abstract

The pressure exerted by the radiation of young stars may be an important feedback mechanism that drives turbulence and winds in forming star clusters and the disks of starburst galaxies. However, there is great uncertainty in how efficiently radiation couples to matter in these high optical depth environments. In particular, it is unclear what levels of turbulence the radiation can produce, and whether the infrared radiation trapped by the dust opacity can give rise to heavily mass-loaded winds. In this paper, we report a series of two-dimensional flux-limited diffusion radiation-hydrodynamics calculations performed with the code ORION in which we drive strong radiation fluxes through columns of dusty matter confined by gravity in order to answer these questions. We consider both systems where the radiation flux is sub-Eddington throughout the gas column, and those where it is super-Eddington at the midplane but sub-Eddington in the atmosphere. In the latter, we find that the radiation-matter interaction gives rise to radiation-driven Rayleigh-Taylor instability, which drives supersonic turbulence at a level sufficient to fully explain the turbulence seen in Galactic protocluster gas clouds, and to make a non-trivial contribution to the turbulence observed in starburst galaxy disks. However, the instability also produces a channel structure in which the radiation-matter interaction is reduced compared to time-steady analytic models because the radiation field is not fully trapped. For astrophysical parameters relevant to forming star clusters and starburst galaxies, we find that this effect reduces the net momentum deposition rate in the dusty gas by a factor of 2-6 compared to simple analytic estimates, and that in steady state the Eddington ratio reaches unity and there are no strong winds. We provide an approximation formula, appropriate for implementation in analytic models and non-radiative simulations, for the force exerted by the infrared radiation field in this regime.

Original languageEnglish
Article number155
JournalAstrophysical Journal
Volume760
Issue number2
DOIs
Publication statusPublished - 1 Dec 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Direct numerical simulation of radiation pressure-driven turbulence and winds in star clusters and galactic disks'. Together they form a unique fingerprint.

Cite this