Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein

Julia J. Griese, Katarina Roos, Nicholas Cox, Hannah S. Shafaat, Rui M.M. Branca, Janne Lehtiö, Astrid Gräslund, Wolfgang Lubitz, Per E.M. Siegbahn, Martin Högbom*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (MnII < FeII < Ni II < CoII < CuII > ZnII). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from MnII and Fe II in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds FeII over MnII as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a twostep process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.

Original languageEnglish
Pages (from-to)17189-17194
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number43
DOIs
Publication statusPublished - 22 Oct 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein'. Together they form a unique fingerprint.

Cite this