Direct-To-Reverberant Energy Ratio Estimation Using a First-Order Microphone

    Research output: Contribution to journalArticlepeer-review

    11 Citations (Scopus)

    Abstract

    The direct-To-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.

    Original languageEnglish
    Pages (from-to)226-237
    Number of pages12
    JournalIEEE/ACM Transactions on Audio Speech and Language Processing
    Volume25
    Issue number2
    DOIs
    Publication statusPublished - Feb 2017

    Fingerprint

    Dive into the research topics of 'Direct-To-Reverberant Energy Ratio Estimation Using a First-Order Microphone'. Together they form a unique fingerprint.

    Cite this