Discrete-time contraction constrained nonlinear model predictive control using graph-based geodesic computation

Lai Wei, Ryan McCloy, Jie Bao*, Jesse Cranney

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Modern chemical processes need to operate around time-varying operating conditions to optimize plant economy, in response to dynamic supply chains (e.g., time-varying specifications of product and energy costs). As such, the process control system needs to handle a wide range of operating conditions whilst optimizing system performance and ensuring stability during transitions. This article presents a reference-flexible nonlinear model predictive control approach using contraction based constraints. Firstly, a contraction condition that ensures convergence to any feasible state trajectories or setpoints is constructed. This condition is then imposed as a constraint on the optimization problem for model predictive control with a general (typically economic) cost function, utilizing Riemannian weighted graphs and shortest path techniques. The result is a reference flexible and fast optimal controller that can trade-off between the rate of target trajectory convergence and economic benefit (away from the desired process objective). The proposed approach is illustrated by a simulation study on a CSTR control problem.

Original languageEnglish
Article numbere17830
JournalAIChE Journal
Volume68
Issue number11
DOIs
Publication statusPublished - Nov 2022

Fingerprint

Dive into the research topics of 'Discrete-time contraction constrained nonlinear model predictive control using graph-based geodesic computation'. Together they form a unique fingerprint.

Cite this