Discriminative Hierarchical Rank Pooling for Activity Recognition

Basura Fernando, Peter Anderson, Marcus Hutter, Stephen Gould

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    89 Citations (Scopus)

    Abstract

    We present hierarchical rank pooling, a video sequence encoding method for activity recognition. It consists of a network of rank pooling functions which captures the dynamics of rich convolutional neural network features within a video sequence. By stacking non-linear feature functions and rank pooling over one another, we obtain a high capacity dynamic encoding mechanism, which is used for action recognition. We present a method for jointly learning the video representation and activity classifier parameters. Our method obtains state-of-the art results on three important activity recognition benchmarks: 76.7% on Hollywood2, 66.9% on HMDB51 and, 91.4% on UCF101.

    Original languageEnglish
    Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    PublisherIEEE Computer Society
    Pages1924-1932
    Number of pages9
    ISBN (Electronic)9781467388504
    DOIs
    Publication statusPublished - 9 Dec 2016
    Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
    Duration: 26 Jun 20161 Jul 2016

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2016-December
    ISSN (Print)1063-6919

    Conference

    Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    Country/TerritoryUnited States
    CityLas Vegas
    Period26/06/161/07/16

    Fingerprint

    Dive into the research topics of 'Discriminative Hierarchical Rank Pooling for Activity Recognition'. Together they form a unique fingerprint.

    Cite this