TY - JOUR
T1 - Dispersal range analysis
T2 - Quantifying individual variation in dispersal behaviour
AU - Doerr, Erik D.
AU - Doerr, Veronica A.J.
PY - 2005/1
Y1 - 2005/1
N2 - A complete understanding of animal dispersal requires knowledge not only of its consequences at population and community levels, but also of the behavioural decisions made by dispersing individuals. Recent theoretical work has emphasised the importance of this dispersal process, particularly the phase in which individuals search the landscape for breeding opportunities. However, empirical advances are currently hampered by a lack of tools for quantifying these dispersal search tactics. Here, we review existing methods for quantifying movement that are appropriate for the dispersal search process, describe several new techniques that we developed for characterising movement and behaviour through an individual's dispersal range, and illustrate their use with data from Australasian treecreepers (Climacteridae). We also describe how the quantitative parameters we discuss are calculated in a freely available computer software package that we designed. Specifically, we present methods for calculating the area searched during dispersal, search rate, thoroughness, intensity, philopatry of search, timing of exploration, and surreptitiousness. When we applied this approach to the study of dispersal in treecreepers, we found that search area, philopatry and timing of exploration showed the greatest individual variation. Furthermore, search area, search rate, thoroughness and philopatry of search were all correlated, suggesting they may be useful parameters for further research on the causes and consequences of different dispersal search tactics. Finally, we make recommendations for modifying radiotracking protocols to facilitate more accurate assessment of individual variation in the dispersal process, and suggest future directions for this type of empirical work at the interface of population and behavioural ecology.
AB - A complete understanding of animal dispersal requires knowledge not only of its consequences at population and community levels, but also of the behavioural decisions made by dispersing individuals. Recent theoretical work has emphasised the importance of this dispersal process, particularly the phase in which individuals search the landscape for breeding opportunities. However, empirical advances are currently hampered by a lack of tools for quantifying these dispersal search tactics. Here, we review existing methods for quantifying movement that are appropriate for the dispersal search process, describe several new techniques that we developed for characterising movement and behaviour through an individual's dispersal range, and illustrate their use with data from Australasian treecreepers (Climacteridae). We also describe how the quantitative parameters we discuss are calculated in a freely available computer software package that we designed. Specifically, we present methods for calculating the area searched during dispersal, search rate, thoroughness, intensity, philopatry of search, timing of exploration, and surreptitiousness. When we applied this approach to the study of dispersal in treecreepers, we found that search area, philopatry and timing of exploration showed the greatest individual variation. Furthermore, search area, search rate, thoroughness and philopatry of search were all correlated, suggesting they may be useful parameters for further research on the causes and consequences of different dispersal search tactics. Finally, we make recommendations for modifying radiotracking protocols to facilitate more accurate assessment of individual variation in the dispersal process, and suggest future directions for this type of empirical work at the interface of population and behavioural ecology.
KW - Animal movement
KW - Habitat selection
KW - Radiotelemetry
KW - Search behaviour
KW - Treecreeper
UR - http://www.scopus.com/inward/record.url?scp=11944269241&partnerID=8YFLogxK
U2 - 10.1007/s00442-004-1707-z
DO - 10.1007/s00442-004-1707-z
M3 - Article
SN - 0029-8549
VL - 142
SP - 1
EP - 10
JO - Oecologia
JF - Oecologia
IS - 1
ER -