TY - JOUR
T1 - Dispersion control for matter waves and gap solitons in optical superlattices
AU - Louis, Pearl J.Y.
AU - Ostrovskaya, Elena A.
AU - Kivshar, Yuri S.
PY - 2005/2/1
Y1 - 2005/2/1
N2 - We present a numerical study of dispersion manipulation and formation of matter-wave gap solitons in a Bose-Einstein condensate trapped in an optical superlattice. We demonstrate a method for controlled generation of matter-wave gap solitons in a stationary lattice by using an interference pattern of two condensate wave packets, which mimics the structure of the gap soliton near the edge of a spectral band. The efficiency of this method is compared to that of gap soliton generation in a moving lattice recently demonstrated experimentally by Eiermann [Phys. Rev. Lett., 92, 230401 (2004)]. We show that, by changing the relative depths of the superlattice wells, one can fine-tune the effective dispersion of the matter waves at the edges of the minigaps of the superlattice Bloch-wave spectrum and, therefore, effectively control both the peak density and the spatial width of the emerging gap solitons.
AB - We present a numerical study of dispersion manipulation and formation of matter-wave gap solitons in a Bose-Einstein condensate trapped in an optical superlattice. We demonstrate a method for controlled generation of matter-wave gap solitons in a stationary lattice by using an interference pattern of two condensate wave packets, which mimics the structure of the gap soliton near the edge of a spectral band. The efficiency of this method is compared to that of gap soliton generation in a moving lattice recently demonstrated experimentally by Eiermann [Phys. Rev. Lett., 92, 230401 (2004)]. We show that, by changing the relative depths of the superlattice wells, one can fine-tune the effective dispersion of the matter waves at the edges of the minigaps of the superlattice Bloch-wave spectrum and, therefore, effectively control both the peak density and the spatial width of the emerging gap solitons.
UR - http://www.scopus.com/inward/record.url?scp=33344464330&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.71.023612
DO - 10.1103/PhysRevA.71.023612
M3 - Article
SN - 1050-2947
VL - 71
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 2
M1 - 023612
ER -