Abstract
We have used deep level transient spectroscopy and capacitance-voltage measurements to study the influence of low-energy hydrogen ion implantation on the creation of defects in n-Si. In particular, we have studied the ion fluence dependence of the free carrier compensation at room temperature, and we have measured the generation of VO-H complex and VP-pair in ion implanted samples. The 7.5 keV H ions created defects in the top 0.3 μm of samples, which resulted in carrier compensation to depths exceeding 1 μm. This effect is not due to defects created by ion channeling but is rather due to the migration of defects as demonstrated using binary collision code MARLOWE.
Original language | English |
---|---|
Pages (from-to) | 719-723 |
Number of pages | 5 |
Journal | Physica B: Condensed Matter |
Volume | 340-342 |
DOIs | |
Publication status | Published - 31 Dec 2003 |
Event | Proceedings of the 22nd International Conference on Defects in (ICDS-22) - Aarhus, Denmark Duration: 28 Jul 2003 → 1 Aug 2003 |