TY - JOUR
T1 - DNA barcoding identifies cryptic animal tool materials
AU - Steele, Matthew P.
AU - Neaves, Linda E.
AU - Klump, Barbara C.
AU - St Clair, James J.H.
AU - Fernandes, Joana R.S.M.
AU - Hequet, Vanessa
AU - Shaw, Phil
AU - Hollingsworth, Peter M.
AU - Rutz, Christian
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/7/20
Y1 - 2021/7/20
N2 - Some animals fashion tools or constructions out of plant materials to aid foraging, reproduction, self-maintenance, or protection. Their choice of raw materials can affect the structure and properties of the resulting artifacts, with considerable fitness consequences. Documenting animals’ material preferences is challenging, however, as manufacture behavior is often difficult to observe directly, and materials may be processed so heavily that they lack identifying features. Here, we use DNA barcoding to identify, from just a few recovered tool specimens, the plant species New Caledonian crows (Corvus moneduloides) use for crafting elaborate hooked stick tools in one of our long-term study populations. The method succeeded where extensive fieldwork using an array of conventional approaches—including targeted observations, camera traps, radio-tracking, bird-mounted video cameras, and behavioral experiments with wild and temporarily captive subjects—had failed. We believe that DNA barcoding will prove useful for investigating many other tool and construction behaviors, helping to unlock significant research potential across a wide range of study systems.
AB - Some animals fashion tools or constructions out of plant materials to aid foraging, reproduction, self-maintenance, or protection. Their choice of raw materials can affect the structure and properties of the resulting artifacts, with considerable fitness consequences. Documenting animals’ material preferences is challenging, however, as manufacture behavior is often difficult to observe directly, and materials may be processed so heavily that they lack identifying features. Here, we use DNA barcoding to identify, from just a few recovered tool specimens, the plant species New Caledonian crows (Corvus moneduloides) use for crafting elaborate hooked stick tools in one of our long-term study populations. The method succeeded where extensive fieldwork using an array of conventional approaches—including targeted observations, camera traps, radio-tracking, bird-mounted video cameras, and behavioral experiments with wild and temporarily captive subjects—had failed. We believe that DNA barcoding will prove useful for investigating many other tool and construction behaviors, helping to unlock significant research potential across a wide range of study systems.
KW - Animal construction behavior
KW - DNA barcoding
KW - Nest building
KW - New Caledonian crow
KW - Tool use
UR - http://www.scopus.com/inward/record.url?scp=85109803493&partnerID=8YFLogxK
U2 - 10.1073/pnas.2020699118
DO - 10.1073/pnas.2020699118
M3 - Article
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 29
M1 - e2020699118
ER -