TY - JOUR
T1 - DNA barcoding will often fail to discover new animal species over broad parameter space
AU - Hickerson, Michael J.
AU - Meyer, Christopher P.
AU - Moritz, Craig
PY - 2006/10/1
Y1 - 2006/10/1
N2 - With increasing force, genetic divergence of mitochondrial DNA (mtDNA) is being argued as the primary tool for discovery of animal species. Two thresholds of single-gene divergence have been proposed: reciprocal monophyly, and 10 times greater genetic divergence between than within species (the "10× rule"). To explore quantitatively the utility of each approach, we couple neutral coalescent theory and the classical Bateson-Dobzhansky-Muller (BDM) model of speciation. The joint stochastic dynamics of these two processes demonstrate that both thresholds fail to "discover" many reproductively isolated lineages under a single incompatibility BDM model, especially when BDM loci have been subject to divergent selection. Only when populations have been isolated for >4 million generations did these thresholds achieve error rates of <10% under our model that incorporates variable population sizes. The high error rate evident in simulations is corroborated with six empirical data sets. These properties suggest that single-gene, high-throughput approaches to discovering new animal species will bias large-scale biodiversity surveys, particularly toward missing reproductively isolated lineages that have emerged by divergent selection or other mechanisms that accelerate reproductive isolation. Because single-gene thresholds for species discovery can result in substantial error at recent divergence times, they will misrepresent the correspondence between recently isolated populations and reproductively isolated lineages (= species).
AB - With increasing force, genetic divergence of mitochondrial DNA (mtDNA) is being argued as the primary tool for discovery of animal species. Two thresholds of single-gene divergence have been proposed: reciprocal monophyly, and 10 times greater genetic divergence between than within species (the "10× rule"). To explore quantitatively the utility of each approach, we couple neutral coalescent theory and the classical Bateson-Dobzhansky-Muller (BDM) model of speciation. The joint stochastic dynamics of these two processes demonstrate that both thresholds fail to "discover" many reproductively isolated lineages under a single incompatibility BDM model, especially when BDM loci have been subject to divergent selection. Only when populations have been isolated for >4 million generations did these thresholds achieve error rates of <10% under our model that incorporates variable population sizes. The high error rate evident in simulations is corroborated with six empirical data sets. These properties suggest that single-gene, high-throughput approaches to discovering new animal species will bias large-scale biodiversity surveys, particularly toward missing reproductively isolated lineages that have emerged by divergent selection or other mechanisms that accelerate reproductive isolation. Because single-gene thresholds for species discovery can result in substantial error at recent divergence times, they will misrepresent the correspondence between recently isolated populations and reproductively isolated lineages (= species).
KW - Allopatric
KW - Bateson-Dobzhansky-Muller
KW - DNA barcode
KW - Peripatric
KW - Reciprocal monophyly
UR - http://www.scopus.com/inward/record.url?scp=33846532499&partnerID=8YFLogxK
U2 - 10.1080/10635150600969898
DO - 10.1080/10635150600969898
M3 - Article
SN - 1063-5157
VL - 55
SP - 729
EP - 739
JO - Systematic Biology
JF - Systematic Biology
IS - 5
ER -