TY - JOUR
T1 - Dna-binding and cytotoxicity of copper(I) complexes containing functionalized dipyridylphenazine ligands
AU - Alsaedi, Sammar
AU - Babgi, Bandar A.
AU - Abdellattif, Magda H.
AU - Arshad, Muhammad N.
AU - Emwas, Abdul Hamid M.
AU - Jaremko, Mariusz
AU - Humphrey, Mark G.
AU - Asiri, Abdullah M.
AU - Hussien, Mostafa A.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - A set of copper(I) coordination compounds with general formula [CuBr(PPh3 )(dppz-R)] (dppz-R = dipyrido[3,2-a:2’,3’-c]phenazine (Cu-1), 11-nitrodipyrido[3,2-a:2’,3’-c]phenazine (Cu-2), 11-cyanodipyrido[3,2-a:2’,3’-c]phenazine (Cu-3), dipyrido[3,2-a:2’,3’-c]phenazine-11-phenone (Cu-4), 11,12-dimethyldipyrido[3,2-a:2’,3’-c]phenazine (Cu-5)) have been prepared and characterized by elemental analysis,1H-NMR and31P-NMR spectroscopies as well as mass spectrometry. The structure of Cu-1 was confirmed by X-ray crystallography. The effect of incorporating different functional groups on the dppz ligand on the binding into CT-DNA was evaluated by absorption spectroscopy, fluorescence quenching of EtBr-DNA adducts, and viscosity measurements. The functional groups affected the binding modes and hence the strength of binding affinities, as suggested by the changes in the relative viscosity. The differences in the quenching constants (Ksv) obtained from the fluorescence quenching assay highlight the importance of the functional groups in altering the binding sites on the DNA. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA changing with the different functional groups. Evaluation of the anticancer activities of the five copper compounds against two different cancer cell lines (M-14 and MCF-7) indicated the importance of the functional groups on the dppz ligand on the anticancer activities. Among the five copper complexes, the cyano-containing complex (Cu-3) has the best anticancer activities.
AB - A set of copper(I) coordination compounds with general formula [CuBr(PPh3 )(dppz-R)] (dppz-R = dipyrido[3,2-a:2’,3’-c]phenazine (Cu-1), 11-nitrodipyrido[3,2-a:2’,3’-c]phenazine (Cu-2), 11-cyanodipyrido[3,2-a:2’,3’-c]phenazine (Cu-3), dipyrido[3,2-a:2’,3’-c]phenazine-11-phenone (Cu-4), 11,12-dimethyldipyrido[3,2-a:2’,3’-c]phenazine (Cu-5)) have been prepared and characterized by elemental analysis,1H-NMR and31P-NMR spectroscopies as well as mass spectrometry. The structure of Cu-1 was confirmed by X-ray crystallography. The effect of incorporating different functional groups on the dppz ligand on the binding into CT-DNA was evaluated by absorption spectroscopy, fluorescence quenching of EtBr-DNA adducts, and viscosity measurements. The functional groups affected the binding modes and hence the strength of binding affinities, as suggested by the changes in the relative viscosity. The differences in the quenching constants (Ksv) obtained from the fluorescence quenching assay highlight the importance of the functional groups in altering the binding sites on the DNA. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA changing with the different functional groups. Evaluation of the anticancer activities of the five copper compounds against two different cancer cell lines (M-14 and MCF-7) indicated the importance of the functional groups on the dppz ligand on the anticancer activities. Among the five copper complexes, the cyano-containing complex (Cu-3) has the best anticancer activities.
KW - Anticancer properties
KW - Copper(I)
KW - DNA-binding
KW - Dipyridophenazine
KW - Molecular docking
UR - http://www.scopus.com/inward/record.url?scp=85106992944&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics13050764
DO - 10.3390/pharmaceutics13050764
M3 - Article
SN - 1999-4923
VL - 13
JO - Pharmaceutics
JF - Pharmaceutics
IS - 5
M1 - 764
ER -